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Appendix A 

Thermodynamics Basics 

A.1 Gibbs Free Energy and Chemical Potential 

A solution to phase equilibrium thermodynamics was first described by Gibbs when he introduced 
the abstract concept of chemical potential (p,). As the name “potential” suggests, pi is an indicator of the 
potential of one molecule to move from one state to another (e.g., movement from one phase to another). 
The goal of phase equilibrium thermodynamics is to relate the concept of chemical potential of matter to 
physically measurable quantities, such as temperature, pressure, and composition (Prausnitz, 
Litchtenthaler, and Azevedo 1985). The difficulty in working with chemical potential is that its 
components all depend on one another. Changes in chemical potential are calculated on arbitrary changes 
of the independent variables (e.g., temperature, pressure, and composition). 

In order to be consistent with calculating these changes, the concept of a standard state must be 
introduced. A standard state is a particular state of species temperature at specified conditions of pressure, 
composition, and physical state. In thermodynamics, the standard state of 1 atm and 25°C is used (Smith, 
VanNess, and Abbott 1996). The standard state properties of specific compounds are marked by the 
superscript. 

The concept of Gibbs free energy must be understood in order to mathematically explain the 
concept of phase equilibrium. Gibbs free energy is defined as the available energy within a bounded 
system. The fundamental equation of Gibbs free energy for a one-component system is shown is 
Equation A-1 (Prausnitz, Litchtenthaler, and Azevedo 1985): 

dG = -SdT -I- VdP . (A- 1)  

This equation states that a change in Gibbs free energy is a fknction of temperature and pressure 
(G =f(T,P)). For a single homogeneous phase composed of several components, the equation must be 
modified to reflect the fact that a change in the number of moles in the system will also change the Gibbs 
free energy of the system by making the following substitutions for V and -S. The equation becomes a 
partial differential equations (shown in Equations A-2 and A-3) (Valsaraj 1995): 

v = ( z )  
T.n, 

-s=(g) 
PSn, 

(A-3) 

These relationships are derived from the basic laws of thermodynamics. A third term is added to 
the equation to account for changes in mass (moles) within a system (shown in Equation A-4) 
(Valsaraj 1995): 
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The third partial differential on the right is commonly known as the chemical potential and is gwen 
the symbol, pi. Considering this new term, Gibbs energy is also a function of mass (in moles) of each 
species present in the system. According to Equation A-4, at constant pressure and temperature, chemical 
potential becomes a function of chemical composition. In other words, the partial molar Gibbs free energy 
is also a function of the chemical composition (Valsaraj 1995). 

When the chemical potential of a molecule is equal in phases a and p, the system is said to be in 
equilibrium (shown in Equation A-5) (Smith, VanNess, and Abbott 1996): 

(A-5) pa =p. P 

where 

i = species of interest in the two phases. 

Hence, AG = 0. If the chemical potential is greater in state a than in state p, then a net transfer of species i 
to state p occurs until equilibrium is reached. It is important to remember that the equilibrium can be 
altered by temperature, pressure, and change in the mass (moles) of a compound. 

A.2 Fugacity 

Chemical potential is a difficult term to quantify, or, in other words, it “does not have an immediate 
equivalent in the physical world” (Prausnitz, Litchtenthaler, and Azevedo 1985). Therefore, it is 
necessary to express the chemical potential in terms of some other function that can be more easily 
identified. This was accomplished by considering the chemical potential for a pure, ideal gas and then 
deriving Equation A-6 for isothermal changes (Prausnitz, Litchtenthaler, and Azevedo 1985): 

P 
P 

pi -po =RTlnT . (A-6) 

This equation states that for an ideal gas, the change in chemical potential, in isothermally going 
from pressure Po to pressure P, is equal to the product of RT and the logarithm of the pressure ratio P/Po. 
Further analysis will reveal that this equation is actually derived from Equation A-1 by substituting in the 
ideal gas for V and integrating with respect to P. At constant temperature, the term including dT drops out 
in the integration. Hence, at constant temperature, the change in the abstract quantity of chemical 
potential is a simple logarithmic function of a physical quantity or pressure. The value of such an equation 
is that a simple mathematical expression has been used to define chemical potential; however, this works 
only for pure, ideal gases. 

In the real world, intermolecular forces lead to nonidealities in the P/P” relationship. To define this 
nonideality, Lewis defined a new variable,f, called fugacity, by writing Equation A-7 for an isothermal 
change for any component in any system, whether it was solid, liquid, or gas; pure or mixed; or ideal or 
not (Prausnitz, Litchtenthaler, and Azevedo 1985): 
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where 

- fi - fugacity at a specified state 

standard state fugacity. - f; - 

Neither fugacity nor chemical potential may be chosen independent of one another; when one is chosen, 
the other is fixed. 

For a pure, ideal gas, the fugacity is equal to the pressure, and for a component i in a mixture of 
ideal gases, it is equal to its partial pressure, yip, where yi is the gas phase mole fraction. Since all pure 
systems approach ideal-gas behavior at very low pressures (ambient pressures are considered to be low 
pressure), the definition of fugacity is completed by Equation A-8 (Prausnitz, Litchtenthaler, and Azevedo 
1985): 

fJyiP -+ 0 as P + 0 . (A-8) 

Lewis called the ratio f / f  the “activity,” designated by the symbol a (not to be mistaken for activity 
coefficient). The activity of a substance gives an indication of how active a substance is relative to its 
standard state since it provides a measure of the difference between the substance’s chemical potential at 
the state of interest and its standard state during an isothermal change. 

Since fugacity has been defined in terms of chemical potential, the fugacities in phases at 
equilibrium must be equal (shown in Equation A-9) (Prausnitz, Litchtenthaler, and Azevedo 1985): 

f.* = fi” . (A-9) 

This equation is a more convenient method in equating chemical potentials. It states that fugacity 
(viewed also as escapability) must be equal in each phase for a system to reach equilibrium. In terms of 
vapor-liquid equilibria, Equation A-10 is stated as (Prausnitz, Litchtenthaler, and Azevedo 1985): 

f.” = fi” . (A- 10) 

This expression simply restates that, at equilibrium, the chemical potential in each phase must be 
equal in terms of fugacity (escapability). 

Another term that requires definition is the fugacity coefficient (0) (shown in Equation A-1 1) 
(Smith, VanNess, and Abbott 1996): 

f i 4 .  =- 
’ Yip 

(A-11) 

where 

yi = vapor mole fraction 

P = systempressure. 
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A.3 Vapor-Liquid Equilibrium 

With fugacity defined, the definition of an activity coefficient is expressed as Equation A-12 
(Smith, VanNess, and Abbott 1996): 

f .  y . = - .  
Xif i "  

(A-12) 

The activity coefficient is a function of the defined state fugacity divided by the standard state 
fugacity and liquid mole fraction. This expression is derived fi-om nonideal properties of liquids and is 
similar to that of how activity is derived when discussing the nonidealities of gases. In other words, the 
value of the activity coefficient would be one in an ideal liquid. Equation A-13 is redefined in terms of 
fugacity of a liquid (Smith, VanNess, and Abbott 1996): 

f L  =x.y . f . "  1 1 1  . (A-13) 

The last term in the equation, the standard state value of fugacity, is a derived expression given by 
Equation A-14: 

(A-14) 

At high pressures, the term in the brackets approaches zero (this can be mathematically proven 
through integration). Therefore, at ambient pressures (1 atm), the exponent has a value of one and is left 
out of the equation (eo = 1). With the pure-component fugacity, the first term on the right is defined in 
Equation A-15 (Smith, VanNess, and Abbott 1996): 

where 

This equation is substituted into the liquid fugacity equation and is now written as Equation A-16 
(Smith, VanNess, and Abbott 1996): 

This equation is now redefined in terms of fugacity of a vapor (shown in Equation A-17) 
(Prausnitz, Litchtenthaler, and Azevedo 1985): 

fi V =$jy iP  . (A-17) 
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There are now two equations defining vapor- and liquid-phase fugacity. When diwssing 
vapor-liquid equililma, the fugacities must be set equal according to Eqwtim A-18 (Smith, VanNess, and 
Abbott 1996): 

(A-18) 

In low-pressure system, the fugacity coefficient approaches unity and can be left out of the 
equation. Under these conditions, the vapor-liquid equilibrium can be expremed as Equation A-19 (Smith, 
VanNese, and Abbott 1996): 

yip = X,Y,PiW . (A- 19) 

(Note that W t ’ s  Lawis a simplificrrtion of the vapor-liquid equilibrium equation with yi = 1 .) 

In attempting to describe activity caefficients, Figure A-1 will be d y e d  in terms of activity, The 
’, . 

figure gives total and partial pressure as a function of liquid composition. At the far left of the figure, the 
fraction of component xA is at zero, in other words, pure B component. At this pint, the indicated 
pressure is the pureamponent vapor pressure of the B component. On the right side of the figure, the 
mole fraction of one indicaW pure A component. This pint is the pure4omponent vapor pressure of the 
A component. 

In i d 4  mixes where no interactions OCCUT, the total pressure c w e  is a straight line from one pure 
component to the other (y = I). This is Raoult’s Lww behavior; however, chemical interactionsl lead to 
deviations from thk ;deaf state. In the case of high activity (n > 11, the total pressure is higher than the 
Raoult’s Law line becaw of this increased activity M escaping potential. In the case of low activity 

liquid intawtion leads to a lower total presswe. 

0.2 I 1 

0.04 I I I I 

0 0.2 0.4 0.6 

Xa 

0.8 1 

I +High Activity + RaouVs Law +Low Activity I 

Figure A-1. Total and parhal pressures of components xn and xb. 
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In terms of energy, high activity can be viewed as a type of repulsion, whereas low activity can be 
viewed as a form of attraction. There are no exact equations to represent these interactions in terms of 
activity as a hnction of composition. However, there are many accurate methods to estimate this 
hnctionality that include the NRTL, Van Laar, Margules, and Wilson equations. 
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Appendix B 

Analytical Solution of Transient Diffusion 

B.1 Derivation of Mass Diffusion through a Liquid 

LIQUID f l l I :  
Figure B-I. Liquid layer configuration. 

Transient diffusion: Carslaw and Jaeger (1959) (heat transfer): 

ac a2c 
at az2 

Initial condition at t = 0: c = c, 

Boundary condition 1 at z = 0: C = 0 

= O  
dC Boundary Condition 2 at z = L: - 
dz 

Find C(t,z,D) 

Solution 

C = z ( ~ ) - T ( t )  

a2T 
- = K - -  
aT 
at az2 

d2Z aT 
at dZ2 

D*T- -  z .- = 
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-A2 1 n  
D - T  at 
-.-= 

dlnT 
dt 
- = -AD 

1nT = - h 2 . D . t + C 0  

-I.’D.t T(t) = c, e 

d2Z -+A2 - z  = 0 
dz2 

Z(z) = A .  sinhz + B . coshz 

T(t) and Z(z) are now defined, plug into C = Z(z)T(t): 

c = e - h 2 D . t  [A’ . sinhz + B’ coshz] specific solution 

Use boundary conditions: 

When z = 0, 

Therefore B’= 0, since cos(0) = 1 

When z = L, 

Therefore coshL = 0 

hL= (2n+l)7t/2 n=0,1,2,. . . 

Substitute in: 
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General solution: C = C A L . e  
n 2 . L  

Initial condition: C = C, at t = 0 

(2n + 1). n: . z 
C, = E A ;  .sin 

n 2 . L  

(2n + 1). n:. z (2n + 1). n:. z L (2n + 1). n:. z L 

Jc, . sin dz = C J A k  . sin . sin 
0 2 . L  2 . L  2 . L  “ 0  

4 . 0 ,  A’ = 
(2m+l) .n :  

Using C = C,, solving for C,, the solution: 

This equation gives the mass fraction at point z. To solve for an average mass fraction of the liquid, the 
above equation is integrated with respect to z from 0 to L and divided by L: 

-d.(2n+1)’ .n’ 
(2n + 1). n: . z 

. sin dz JY.2. 4 . c  (2.L)’ 

n=O 2 . L  0 c, = T 

Use substitution rule: 

(2n + 1). n: . z u . 2 . L  
Let u = ,then z = 

2 . L  (2n +I) .  n: 

2 . L  
dz = du 

(2n +I) .  n: 
(2n + 1). n: 

2 
at z = L: U =  

at z = 0: u = 0 
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Cavg = 
J, n:.=, 

L 

. sin u . 
2 . L  

du 
(2n + I).  n: 

Once integrated, the equation becomes: 

For every whole integer, 1,2,3,. . . - 
(2n + I).  n: 

cos = o  
2 

The result is the analytical solution for calculating the average mass in the dish at time t (Section 2, 
Equation 2-10): 

(The solution of analytical method of transient diffusion is compliments of Dr. &chard Rowley, 
Department of Chemical Engineering, Brigham Young University.) 

B.2 Discussion of the Analytical Method 

The first step in the use of the analytical method in calculating diffusion coefficients was to ensure 
that the equation fit the boundary conditions defined by the geometry of the petri dish experiments and 
was repeatable using different values of L. 

An effective mass diffusion coefficient was calculated for carbon tetrachloride diffusing through 
TRO by fitting the analytical solution to experimental data. Equation 2-8 was used to predict the effective 
diffusion coefficient by minimizing error using the least squared difference method. Using the height of 
the liquid layer as the value for L, the calculated value of the effective diffusion coefficient was 
1.27E-5 cm2/second with an error of 0.076. This answer was off by an order of magnitude compared 
those listed in previous work (Miller 1999). 

Analysis of boundary conditions of the analytical solution reveals one significant flaw. In both the 
Carslaw and Jaeger (1959) method and in the equation derived by Dr. &chard Rowley, thickness of the 
dish is assumed to be a constant. This condition stems from the application of the heat and mass transfer 
analogy. Figure B-2 illustrates the boundary conditions of heat conduction through a slab. 
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Temp = 0 

f 

INSULATION 

Temp, 

Figure B-2. Heat conduction through a slab of thickness L. 

The slab is insulated on every side except at the top surface. A temperature of zero is assumed at 
the surface while the rest of the slab at time zero is considered to be a uniform constant temperature. The 
resulting temperature gradient initiates heat transfer. The rate of heat transfer through the slab is a 
function of conductivity (K) .  In the application of the heat and mass transfer analogy, effective diffusion 
is substituted for conductivity and concentration for temperature. Figure B-3 demonstrates change in 
parameters of the system when the heat and mass transfer analogy is applied: 

Cone,, 

Figure B-3. Mass transfer through a liquid layer of thickness L. 

Mass loss occurs by the same mechanism in which heat is lost. A concentration gradient, identical 
to that of the temperature gradient, results in mass loss through the surface of the liquid. 

Unlike heat conduction where slab thickness remains constant, loss of mass (solvent) in the liquid 
results in a decrease in the height of the liquid layer (see Figure B-4). In this case, the assumption of a 
constant thickness does not hold true in the solution of diffusion. Application of the analogy has been 
successfully applied in situations where the thickness of the liquid layer was held constant (Anderson and 
Saddington 1949). However, in this study, the liquid thickness decreases because of the evaporation of the 
chlorinated solvent at the liquid surface. 
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Conc = 0 LIQUID 

GLASS DISH 

Conco 
Figure B-4. Mass diffusion through a liquid layer of thickness L. 

According to the analytical equation, thickness of the dish is held at a constant of thickness L. 
However, thickness of the liquid layer is reduced by 67% when the chlorinated solvent has completely 
evaporated out of the mixture, leaving behind a liquid that is almost pure TRO with traces of carbon 
tetrachloride remaining in the liquid phase. At this point, thickness of the liquid layer is 33% of the 
starting thickness of 1.35 cm or 0.45 cm. This inconsistency can be addressed in several ways. 

One solution to the problem is to view the diffusion of carbon tetrachloride through a constant 
0.45-cm layer of oil. This simplistic approach assumes that carbon tetrachloride diffuses only through the 
TRO. In reality, the carbon tetrachloride not only diffuses through the TRO, but it also dissolves through 
itself. In other words, the carbon tetrachloride must diffuse through a mixture of components before it 
reaches the surface and evaporates. 

A more practical solution is to view the thickness of the liquid layer as an average of the height of 
the mixture at time zero and the height of the oil at the point of complete evaporation. This simple 
approach accounts for both the extremes in thickness. It is important to note that this method derives an 
average diffusion coefficient and is an approximation. In following this reasoning, it is assumed that using 
an average thickness will actually produce a more reasonable value for the thickness of the liquid layer. 
Therefore, a uniform thickness of (1.35 cm + 0.45 cm)/2, or 0.90 cm, will be used for L in the analytical 
solution. 

To confirm this approach, carbon tetrachloride, TRO evaporation experiments were completed in 
three petri dishes with varying height and the same surface area. The results are listed in Table B-1 . 

Table B- 1. Comparison of varying L in the analytical solution with carbon tetrachloride and Texaco Regal 
Oil. 

Effective Diffusion 
Height L Coefficient Mean Squared 
( 4  ( 4  (cm2/second) Difference 

0.5 0.333 6.2E-6 3.402E-4 

1.35 0.90 5.5E-6 1.807E-4 

2.0 1.333 4.7E-6 9.152E-5 
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As Table B-1 demonstrates, the values of effective diffusion are within 15% of each other. The use 
of any other value of L resulted in substantial differences in the values of the fitted effective diffusion 
coefficient (greater than order of magnitude). Therefore, two-thirds of the petri dish height for L are used 
in the analytical solution. 

A noted trend of improved fit is seen as the height of the dish increases. At the time of this 
research, the petri dish with the height of 1.35 cm was the only dish available in sufficient quantity to 
perform the experiments and was used throughout the study. 

B-9 



B-10 



Appendix C 

Permeability Calculation through Polyethylene Bagging 

c- 1 



c-2 



Appendix C 

Permeability Calculation through Polyethylene Bagging 

Table C-1. Dimensions of a 55-gallon drum and polyethylene bag. 

Length 85.09 cm 

Radius 27.94 cm 

Circumference 175.51 cm 

Polyethylene bag (10-mil poly) thickness 0.02286 cm 

Schematic of the surface area of polyethylene bagging is available to VOC vapor escape while the 
drums are in the vertical and horizontal positions. 

Vertical Position: 

Vapor escape is through the top of liner 

Polyethylene bag pb 

3 7-gal 
sludge 

SA = 2,451 cm2 

Figure C-1 . Volatile organic compound vapor escape from polyethylene bagging in the vertical position. 

Horizontal Position: 

Vapor escape is through the top of liner 

d Polyethylene bag 
SA = 4,575 cm2 

37-gal sludge 

Figure C-2. Volatile organic compound vapor escape from polyethylene bagging in the horizontal 
position. 
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The permeability values p, of VOCs passing through polyethylene bagging at 25°C are provided by 
Liekhus and Peterson (1995). The permeability value for PCE was not determined by Liekhus and 
Peterson (1995) and has been assumed to be the same as the value for TCE because of similar 
stereochemistry. 

carbon tetrachloride 1.81 x 10.' cm3 (STP) cm-' s-' (cm Hg).' 

TCA 1.18 x 10.' 

TCE 4.96 x 10.' 

PCE 4.96 x 10.' 

The vapor fractions, yi, for chlorinated solvents in the field mixture are determined by the percent by 
volume of solvents in the field mixture. The following are yi corresponding to the percentage by volume. 

carbon tetrachloride 68.9% yi = 0.0565 

TCA 14.1% yi = 0.0022 

TCE 10.9% yi = 0.0005628 

PCE 6.1% yi = 0.000707 

Equation C-1 is the formula for calculating the rate of volume of displaced VOC across the polyethylene 
bagging. 

p, x (yi x P) x SA/th x p, = cm3/second (C-1) 

where 

yi = 

P = pressure surrounding vapor, cm Hg (76cm) 

SA = surface area of the bagging, cm2 

vapor fraction of ith VOC in vapor phase, cm3 VOC/cm3 gas 

th = thickness of the bagging, cm 

p, = permeability of ith VOC, cm3 (standard temperature and pressure) cm-' s-' (cm Hg).' 

c-4 



Appendix D 

Chemical Properties 

D- 1 





Appendix D 

Chemical Properties 

Table D-1. Chemical properties of Texaco Regal Oil 32. 
Parameter Texaco Regal Oil 32 

Appearance“ Very light, pale yellow 
Structure” Paraffinic hydrocarbon (alkane) 
Average gram molecular weightb 

Specific gravity‘ 0.8665 

Kinematic viscosityb 77.037 at 21°C 

360 (American Society for Testing 
and Materials Manual 2502) 

Pour point” -25°F 

a. Texaco Regal Oil 32 product sheet 
b. Verbal communication with Texaco Oil, Inc 
c. Texaco material safetv data sheet 

Table D-2. Chemical properties of carbon tetrachloride and trichloroethene 
Parameter Carbon tetrachloride Trichloroethene 

Chemical formula” 
Appearance“ 
Gram molecular weight (g/mol)” 
Density (g/cm3)” 
Relative vapor density” 
Boiling point (“C)” 
Melting point (“C)” 
Vapor pressure (mmHg)” 
Difhsivity in water ( lo5 cm2/second)” 
Solublity” 

Henrys Constant ( lo2 atm*m3/mol)” 
Dynamic viscosity (cP)~ 
Kinematic viscosity (cS)~ 

Log KO,” 

cc4 
Clear, colorless liquid 
153.82 
1.59472 @ 20°C 
5.31 
76.54 
-22.99 
90 @ 25°C 
0.90 @ 20°C 
785 mg/L @ 20°C 
2.83 
3.02 @ 25°C 
0.97 
0.61 

C2HC13 
Clear, colorless liquid 
131.39 
1.461 @ 20°C 
4.54 
87.2 
-87.1 
56.8 @ 25°C 
0.94 @ 20°C 
1,080 mg/L @ 20°C 
2.025 
9.9 @ 20°C 
0.57 
0.39 

a. Montegomery 1996 
b. Pankow and Cherry 1996 
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Table D-3. Chemical properties of 1.1.1 -trichloroethane and tetrachloroethene 
Parameter 1.1.1 -trichloroethane Tetrachloroethene 

Chemical formula” 
Appearance“ 
Gram molecular weight (g/mol)” 
Density (g/cm3)” 
Relative vapor density” 
Boiling point (“C)” 
Melting point (“C)” 
Vapor pressure (mmHg)” 
Difhsivity in water ( lo5 cm2/second)” 
Solublity” 

Henrys Constant ( lo2 atm*m3/mol)” 
Dynamic viscosity (cP)~ 
Kinematic viscosity (cS)~  

Log KO,” 

C2H3C13 
Clear, colorless liquid 
133.40 
1.339 @ 20°C 
4.60 
76.54 
-30.6 
100 @ 25°C 
0.89 @ 20°C 
480 mg/L @ 20°C 
2.50 
1.5 @ 20°C 
0.84 
0.62 

c2c14 
Clear, colorless liquid 
165.83 
1.623 @ 20°C 
5.72 
121.2 
-19 
14 @ 25°C 
0.87 @ 20°C 
149 mg/L @ 20°C 
2.53 
15.3 @ 20°C 
0.9 
0.61 

a. Montegomery 1996 
b. Pankow and Cherry 1996 
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Appendix F 

Schroeder Method of Estimating Molar Volumes 

The Schroeder method is generally accurate to within 3 - 4%. Carbon tetrachloride is listed in 
"The Properties of Gases and Liquids" and from this information, it is used to verify the validity of 
the Schroeder method. The molar volumes are calculated using table 3-8 (pg. 53) in "The 
Properties of Gases and Liquids". 

3 cm This is the known molar volume of Carbon tetrachloride: VCT-known ' 0 2 ' z  

These are the molar volumes for each atom (Table 3-8): 

3 3 cm cm c Z7.- C1 ~24.5.-  
mol mol 

3 
H ~ 7 . -  cm 

mol 

3 
bond double =7.- cm 

mol 

Calculate error using known value of carbon tetrachloride. 

VCT z ( 1.C + 4.C1) 
3 cm 

VCT = l o 5 0 z  

error = 2.9410% 'CT ~ VCT-known error = 
CT-known 

As can be seen, the error is relatively small. Calculate values for remaining components. 

VTCA z (2.C + 3.C1+ 3.H) 

Vhex = (6 .C+  14.H) 
3 cm Vhex = 1 40°z 
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